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This paper reconsiders the argument that empirical estimations of aggregate produc-
tion functions may be interpreted merely as statistical artefact. The reason is that
Occam’s razor, or Herbert Simon’s principle of parsimony, suggests that the aggre-
gate production function, together with the side equations derived from the usual
neoclassical optimizing conditions, simply reflect the underlying accounting identity
that value added definitionally equals the wage bill plus total profits. This argument
is illustrated with respect to the empirical evidence presented by Arrow, Chenery,
Minhas and Solow (Review of Economics and Statistics, XLIII, 225-50, 1961)
and which led them to derive the Constant Elasticity of Substitution aggregate
production function. It is shown that their results are more parsimoniously explained
with reference to the underlying accounting identity than to any technological

relationship.

I. INTRODUCTION!

In testing theories aimed at explaining empirical
phenomena, it is not enough to satisfy ourselves that
the observed data are consistent with the theory. We
must also ask whether the data can be explained
equally well by other, perhaps weaker and simpler,
theories. (Simon, 19792)

It has long been appreciated that the theoretical founda-
tions of the aggregate production function are tenuous in
the extreme. As Fisher (1971, p. 305) commented: ‘Recent
work [on aggregation] has shown pretty clearly that the
conditions under which the production possibilities of a
technology diverse economy can be represented by an
aggregate production function are far too stringent to be
believable.” But there is a puzzle. As he continues: ‘Yet
aggregate production functions apparently work neverthe-
less and do so in a way which is prima facie not easy to

explain.” A classic example of this is the paper by Arrow,
Chenery, Minhas, and Solow (1961) (hereafter ACMS)
which first popularized the Constant Elasticity of
Substitution (CES) production function. In the course of
their paper ACMS estimated a side relationship derivable
from the CES production function, namely the regression
of the logarithm of labour productivity on that of the wage
rate. This relationship was estimated using cross-country
data for a number of countries for selected industries at
the three-digit SIC level. In spite of the wide disparities in
the level of economic development of the countries in the
sample, the R%s were uniformly high and the regression
coefficients well determined.

But, pace Fisher, there has been an explanation of the
good statistical fit that the production function usually
gives which dates back to Phelps Brown (1957).2 This is
the proposition that all that the data are actually reflecting
is an underlying accounting identity and, consequently, it is
not surprising that the coefficients are usually well deter-

! Professors Fisher, Fuchs, and Solow provided useful comments on a previous version. This should not be taken that they necessarily

agree with the arguments put forward here.

2 The antecedents of this critique may be found in Marshak and Andrews (1944).
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mined and the correlation coefficient not far from unity.?
Phelps Brown’s arguments relating to cross-industry esti-
mations were later formalized by Simon and Levy (1963) in
a brief note. The problems that the identity poses for the
time series estimations of the Cobb-Douglas production
function were demonstrated by Shaikh (1974), and puta-
tively refuted by Solow (1974). (But see Shaikh, 1980, and
McCombie, 1998, 2000.) Simon (1979a) drew together
some of these criticisms, and he briefly touched on the
CES production function and the ACMS study (Simon,
1979a, p. 469). Nevertheless, in spite of the fact that he
thought that these criticisms were of sufficient importance
to be mentioned in his Nobel lecture of the same year

(Simon, 1979b, p. 497), they have been almost entirely

ignored in the literature.

The purpose of this paper is to revisit the ACMS paper
and present some supplementary evidence in support of
Simon. The rest of the paper is organized as follows.

First, Section II discusses the argument that while the 'v

data may be reflecting an aggregate production function,
Occam’s razor, or the principle of parsimony as Simon put
it, suggests that nothing more is being captured than the

accounting definition of value added. In Section III, the
CES production function is discussed in the light of the.

principle of parsimony, and the cross-section regression
results of ACMS are reconsidered. While the points con-
sidered here could have been made with inore recent data,
the importance of the ACMS paper in the development of
production theory makes their data set a fitting choice.
Moreover, the present arguments may have some import-
ance for the history of economic thought. In Section IV the
tie-series results of ACMS are discussed using Solow’s
(1957) data. Section V concludes the paper and suthmarizes
the main findings.

II. THE AGGREGATE PRODUCTION
FUNCTION AND THE ACCOUNTING
IDENTITY

In this section theé argument that all that estimations of
production functions are doing is capturing an undetlying
accounting identity (albeit sometimes misspecified) will be
briefly considered. Hence, regressing output on the inputs
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is bound, almost by definition, to give a very good statis-
tical fit. Such estimations, because of the underlying iden-
tity, can provide no independent test of the hypothesis of
whether. or not an aggregate production function exists. or,
even if it does, what the true structural parameters are.*

‘There are:a niumber of ways thiscriticism can be made; but

to begin with Simon and Levy’s (1963) argument for the
Cobb-Douglas will be followed due to its simplicity. Later
on this will be extended. Here the concern is with cross-
industry data or statistics for the same industry but using
different spatial observations (e.g. regions or countrles) It
is assumed that the wage and thé rate of profit do not Vary
greatly between the different industries or spatially within

“the same industry. (For the sake of argument, it will hence-

forth be assumed that different industries are being dealt
with.) ‘
The value added of the zth 1ndustry is deﬁned as:

Q,—=wL~+rK~ T .(1)

Where Q is output (value added) w is the reéal wage r 1s the

average rate of profit, L is employment and K is the cap1ta1

stock. Labour’s share is defined as a; = wL;/Q;.
The Cobb-Douglas production function is glven by

Q; = ALYK? (2)

where o and 3 are the output elasticities with respect 10
labour and capital. If Equation 2 is expanded as a Taylor
series around the mean value of the variables, i.e. around
0, L, and K, and terms to the power of two or greater are
ignored, the following approximation is obtained:

0~ 0+a(@/D)Li— D)+ B(O/R)(Ki-K)  (3)
Expanding the accounting identity (Equation 1) yields
0;= Q0+ w(L;— L) +r(K;— K) (4)

Comparing expressions (3) and (4) leads to the conclu-
31on that w = a(Q/L) (or o = wL/Q), and r = ﬂ(Q/K) (or
=rK/0). Note that this implies that a+f=1’
Therefore if, in fitting a Cobb-Douglas function, one
finds a value of the elasticity « in agreement with the actual
labour share @ (and that 3 equals capital’s share (1-— a)),
this cannot be taken to imply that the underlying produc-
tion function is triily a Cobb-Douglas. But the important
aspect to stress is that the Cobb-Douglas production func-

3 Fisher ( 1971, p. 305, footnote 3) was aware of Phelps Brown’s article but disregarded it on the grounds that Phelps Brown ‘dismisses the
time series results as poor or implausible, largely because of their failure to allow for technical change’ and that his arguments ‘do not
show why a cross-sectionally estimated production function should give feasonable wage predictions for years far from that of the
original cross section’. Turning to the first point, Fisher is only partially correct. It is true that the original Cobb and Douglas’s time
series estimations which Phelps Brown criticized did not make any allowance for technical change. But Phelps Brown was well aware of
other studies which did include a time trend. These were dismissed by Phelps Brown (1957, p. 350) because the ‘results have not been
acceptable’ (i.e. the estimated coefficients differ markedly from the factor shares and that of capital was often statistically insignificant).
Why this occurs notwithstanding that an identity if being estimated is discussed in the text below. It is not clear to us exactly what Fisher
means in his dismissal of the Phelps Brown’s criticism of the cross-industry results.
Th1s is true even if no explicit recourse is made to the marginal productivity theory of factor pricing in deriving the estimating equation.

> This is because a + 8= (wL+rK)/Q =1.
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tion will, should the real wage and profit rates be roughly
constant, provide a close approximation to the accounting
identity. This will be true no matter what the actual under-
lying aggregate technology is, or even when, because of
aggregation problems, there is no such thing as a well-
behaved aggregate production function that reflects the
technology of the economy or industry. The approximation
will not necessarily be exact, of course, because in the
accounting identity the factor shares are not necessarily
constant, whereas they are in the Cobb-Douglas function.
Consider the case where the wage and rate of profit are
constant. Simon (1979a) shows that if a wide range in the
capital-labour ratios is taken that is much larger than
occurs in reality, the error obtained from mistakenly fitting
the Cobb-Douglas function is generally small; the pre-
dicted value differs from the observed by less than 10%.
‘Since in the data observed, most of the sample points lie
relatively close to the mean value of [the labour/capital
ratio], we can expect average estimating errors of less
than 5 per cent’ (Simon, 1979a, p. 466).°

The argument may be generalized to other putative
production functions. To see this, assume that there is a
continuum of firms. Recall that the identity is given by
0Q; = w;L; + r;K;. Taking the total differential of the iden-
tity and expressing it as proportionate rates of change, one
obtains:

dQ:/Q; = a;(dw;/w;) + (1 — a;)(dr;/r;) + a;(dL;/L;)
+ (1 — @;)(dK;/K;) (5)

where a;=w,L;/Q; and (1 —q;) =r,K;/Q;. The cross-
sectional production function may be written generally as
0; = Af (L;, K;) where 4 is a constant. Differentiating this
with respect to time and expressing as proportionate
changes gives:

d0;/Q; = ey(dL;/ L) + Bi(dK;/K) (6)

If a;(dw;/w;) + (1 — a;)(dr;/r;) is zero, it can be seen from a
comparison of Equations 5 and 6 that «; must equal ¢; and
B; must equal (1 —g;), even though no assumption has
been made about the state of competition or that factors
are paid their marginal products. Production function
studies estimate specific functional forms of Equation 6,
including the CES as will be seen below. But this does
not obviate problem that all that is being estimated is an
approximation to the identity.

For example, assume that factor shares are comstant
for reasons that have nothing to do with the form of
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the production function. The identity, Equation 5, may
be integrated to give the specific functional form,
0; = Bwir™ LK™ which is identical to the Cobb—
Douglas ‘production function’, namely, Q; = AL?Kf , pro-
vided that w?rl@l"“) is roughly constant, or is orthogonal to
LK It follows that a = a and B = (1 — a).

In this last case, the accounting identity incorporates the
stylized facts of constant factor shares, but there are a
number of explanations that are independent of the pro-
duction function that can account for this, such as a con-
stant mark-up on unit costs or the Kaldorian
macroeconomic theory of distribution. However, since a
Cobb-Douglas production function also generates con-
stant shares, it is not possible to reject the hypothesis
that this is the true underlying production function.
Nevertheless, the work on aggregation problems, as
noted in the introduction, most notably by Fisher (see,
for example, Fisher, 1969), has shown that the conditions
for the existence of an aggregate production function are so
stringent as to rule it out on theoretical grounds. Fisher
(1987) summarized the position as ‘that the analytic use of
such aggregates as “capital”, “output”, ‘“labour” or
“investment” as though the production side of the econ-
omy could be treated as a single firm is without sound
foundation’, although he added that ‘this has not discour-
aged macroeconomists from continuing to work in such
terms’.” Next a consideration of how the CES ‘production
function’ may also be interpreted as simply reflecting the
underlying identity will be explored.

III. THE CES PRODUCTION FUNCTION
AND THE ACCOUNTING IDENTITY

Since the publication of the seminal paper by ACMS, the
CES production function has been widely used in both
theoretical and empirical work. The starting point of
ACMS’s work was the empirical observation that the
value added per unit of labour used within a given industry
varies across countries with the wage rate. Consequently,
ACMS fitted a regression of the logarithm of labour pro-
ductivity on a constant and the logarithm of the real wage
rate, that is (Equation (Ib) in ACMS),

In(Q;/L;) = ¢, + by Inw; (7)

The data used were cross-sections of 19 countries for 24
three-digit SIC manufacturing industries for the early
1950s (not the same year for every country). The results

§ Not surprisingly the same argument applies to time series data. This is discussed in Section III and has been analysed in Shaikh (1974,
1980), McCombie (2000), McCombie and Dixon (1991) and Felipe (2000).

7 It might look as if the problem faced is one of econometric identification between the production function and the identity. This is not,
however, the case. The difficulty is rather one of interpretation. It is not an identification problem because the accounting identity is not a
behavioural equation and so there are no other variables that one could include in it, even as a matter of principle, to identify the

production function.
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indicated a highly significant correlation. The authors con-
cluded that .. :-in 20 out of 24 industries, over 85 per cent
of the variation in:labour productivity is explained by vari-
ation in wage rates alone’ (ACMS, p. 228). Since ACMS
intérpreted the parameter b; as the elasticity of output per
worker with respect to the wage rate, the authors tested the
null hypothesis Hj : b, = 1. Of the 24 industries, 23 had
estimated elasticities below unity, and this was statistically
significantly in 14 cases (Table 2 in their paper). This led
ACMS to conclude that ‘... our empirical results: imply.
that elasticities of substitution tend to be less than one,
which contrasts strongly with the Cobb-Douglas view of
the world’ (ACMS, p. 230). This provided the rationale for
their derivation of the CES function, together with several
auxiliary linear side relations to facilitate its estimation as
nonlinear estimation techniques were in théir infancy in the
early 1960s. The observations of labour productivity were
treated. as if they came from a constant réturns to scalg
(meta) production function: Postulating perfectly competi-
tive markets; ACMS derived the following equation, under
the assumption that the production funttion exhibits con-
stant returns to scale and a constant elasticity of substitu-
tion (Equation 25 in ACMS): - ,

I (Qi/L) =l [(")E) ] +olaw,  (8)

where « is an efficiency parameter, 6 is a distribution par-
ameter, and o is the elasticity of substitution, and all are
constants. Equation 8 provides the theoretical rationale for
Equation 7 and ACMS show that the production function
underlying Equation 8 is the now well-known CES,
namely, 0, = 1[6L;* + (1 — K7 7/*.

However, the empirical results obtained by ACMS were
challenged by Fuchs (1963) who demonstrated that the
data used by ACMS did not support their conclusions.
‘Under’ a more reasonable interpretation, the data are
substantially consistent with' the Cobb-Douglas assump-
tion of an elasticity of substitution of unity’ (Fuchs 1963,
pp. 436-7). The basis for Fuchs’s refutation of ACMS’s
concliisions was that the nations uséd by the latter were
very diverse (9 developed and 10 developing countries
ranging in level of economic development from the
United States and Canada to India and Iraq). Fuchs ques-
tioned the assumption that both the developed and the less
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developed countries would have the same parameters, no-
tably the same level of technical efficiency. To test. this, he
included a dummy variable to differentiate the two groups.
The regression results now had only two industries ‘with
significant elasticities below one, and another two indus-
tries had elasticities above one.® . Ironically, these.results
should have vitiatéed the empirical justification to search
for a more: general. production function compared: with
the Cobb-Douglas. Fuchs concluded: ‘I do not argue
that the Cobb-Douglas assumption of unity is correct,
but only that the data presented by Arrow et al. do not
constitute an adequate refutation of it” (Fuchs 1963, p.. 438).
There is, however, a problem with the interpretation of the
regression results when the dummy variable is included.. It
turns out that the value. of the intercept of the less devel-
oped countries is larger than- that of the advanced coun-
tries. If Equation 8 were the correct rationale. for. the
fegression, it can be seen that this implies that the: level
of efficiency of the advanced countries was actually lower
than that of the less developed countries, prov1ded bl was
less than unity.”.

As stated above, a first purpose of thls paper is to suggest
that both ACMS and Fuchs (1963) overlooked a funda-
mental problem that renders their conclusions concerning
the regression results problematic. While Fuchs was correct
in pointing out that ACMS had erroneously concluded that
most of their regressions indicated that b; was smaller than
one, he also overlooked the fact that Equation 7 above
suffers from an interpretation problem, and that it could
be simply the result of an identity. This was Simon’s
(1979a) important, but unfortunately neglécted, contribu-
tion. To see this, note that from the definition of the labour
share, labour productivity can be written as:

Qi/Li =w;/a (9)

If it happens that the labour share is ‘sufficiently’ con-
stant across countries (i.e., ¢; =~ @, where the subscript i
denotes the ith country), Equation 9, an'identity, will be
equivalent to ACMS’s Equations 7 and 8 (to see this, take
the logarithm of Equation 9). Given the presence of this
underlying identity, it is hardly surprising that the R%is so
high. Thus, one may argue that the use of regression analy-
31s in Equatlon 7 would simply be a test for the null

8 Fuchs included in the group of developed countries the USA, Canada, New Zealand, Australia, Denmark, Norway, the UK, Irel_a_nd
and Puerto Rico; and in the group of developing countries, Colombia, Brazil, Mexico, Argentina, El Salvador, Southern Rhodesia, Iraq,
Ceylon, Japan, and India. If Fuchs had used different dummies for each of the 24 industries, grouping the countries with the highest and
lowest labour sharés in each industry, he would have found that in all cases, without exception, the estimate of b; is one. In other words,
the reason why he found four cases with an estimate of b, different from one is that in those cases the relationship between 1-0 dummy
variable and high—low labour share is broken. Table 2 in the text below shows that in eight industries, the country with the highest labour
share is a developing country; and in three cases,the country with the lowest share is a developed country.

This was, of course, appreciated that the time. Various suggestions were niade to resolve the paradox, including the fact that the wages
in the less developed countries were inaccurately measured. If w is subject to measurement error then the slope coefficient will be biased
downwards and an appropriate instrument should be used in the estimation. Of course, if the estimate of b; was not statistically different
from unity, then the intercept is no longer a function of the level of efficiency and the paradox vanishes. By including a dummy variable,

Fuchs found that this became the case.
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hypothesis that labour’s share in the cross-section is con- ACMS appear to have used logs to the base 10
stant. Obviously, if by chance a; = @, the OLS regression of rather than natural logs.
Equation 7 (formally equivalent to estimating the logar- (ii) The factor shares, derived from the constant term,
ithmic transformation of the identity, Equation 9) will appear to be poorly estimated. The implied factor
yield the following: R* =1, b; =1, and a=1/exp (). shares in Table 1 are very different from the average
Comparing Equations 8 and 9, one can see that the esti- factor shares in Table 2, with the exception of indus-
mate of o must be one. In most cases, however, the labour tries 332 (Glass) and 342 (Non-ferrous metals).
share will not be exactly constant across countries, and (iii) The null hypothesis Hy:b; = 1(33) cannot be
thus the R? will be less than unity, and the estimate of o rejected in 14 cases at the 5% confidence level; and
(viz. b)) will differ from 1. On the one hand, if labour’s if we increase the confidence level to 1%, then it
share does not vary systematically with the wage rate, cannot be rejected in 20 industries. (Remember
then b; = 1. If, on the other hand, labour share and wage that this is without including a dummy variable.)
rate vary systematically, then ]31 > 1 (if their covariance is The reading of these results is, therefore, different
negative) or by < 1 (if their covariance is positive). But from that of ACMS, and the evidence indicates that
these explanations are compatible with the identity the ‘elasticity of labour productivity with respect to
(Equation 9). Thus, due to this problem of interpretation, - the wage rate’ is generally not significantly different
it is not possible unambiguously to accept this regression as from unity.
reflecting the parameters of an underlying production func- @iv) The joint hypotheses Hy: 1/exp(é;) = Gayes
tion, as ACMS did. It is of course possible that this is the 131 = l(xg) cannot be rejected in only three cases
case, and thus 51 would be an estimate of the aggregate (industries 271, 332 and 342) at the 5% confidence
elasticity of substitution o.!° However, the data can pro- level; and in two more cases (industries 331, 334) if
vide neither an independent test of this hypothesis nor a the confidence level is increased to 1%.
test of whether or not the underlying technological struc- (v) The information in Table 2 indicates that the disper-
ture of the economy is a well-defined CES (or any other) sion in factor shares is rather large, apart from poss-
production function. ible errors in the data. Some of the labour shares in
The regressions for the 24 industries using ACMS’s data Table 2 are implausible (in particular aq;;) and
were re-run and the results are shown in Table 1'!. This throw into doubt the quality of the data. Given
is done for the purposes of recovering the implied factor this, it is not surprising the overall poor estimates
share, 1/ exp (¢;), and testing the null hypotheses Hj : l;l = of the factor shares shown in Table 1.
1(x?), and the joint hypotheses Hy : 1/ exp(é,) = aave and (vi) The fact that almost all point estimates of the slope
b = l(xg). Table 2 shows the average share of labour coefficients reported in Table 1 are less than one
(@ave) for the various industries, the range (@max; Amin) (Z;l < 1) indicates that the size of the labour share
with the corresponding country (country a__; country is positively correlated with the real wage. This is
amin), the standard deviation (s) of the shares, and the confirmed in Table 3, which reports the results of
coefficient of variation (s/a,.). Several features of the estimating Inag; = u; -+ up lnw;, where the slope
results are worth mentioning: parameter p, is simply an estimate of the bias in
the labour share identity.!? How can this relation-
(1) The present results are slightly different from those ship be explained other than by invoking an aggre-
of ACMS. The conjecture why the estimate of the gate production function? It could simply be that
slope b; is slightly different may be due to the the mark-up varies with the level of development.
improvement in computer precision and any differ- The mark-up is higher in the less developed coun-
ence may be important for testing purposes. The tries which are less unionized and generally have less
difference in the intercept is due to the fact that employment rights. This is of course a behavioural

1p this case one could even argue that the data represent equilibrium observations, as Professor Solow indicated in private
correspondence.

1 Since the estimation of Equation 7 is merely that of an identity, a number of putative econometric problems are disregarded. For
example, it could be argued that the error term in Equation 9 should have an expected value of 1, and be distributed lognormalily.
Therefore, the error term in Equation 7 would be distributed normally, but not with zero mean. This has implications for the interpret-
ation of the constant (it would be a biased estimate). However since we are depriving the exercise of any behavioural interpretation, the
error term here is simply the deviation from the identity.

12To see this, note that the identity can be written as In(Q;/L;) = d + b* In(w;) + ¢*In (1/4;). In this case econometric estimation will
yield d=0; b*=c"=1. But what is estimated is In(Q;/L;) =c¢; +b;In(w;). This implies that b; =5"+ ¢*{Cov [In(w;),
In(1/a;)]/Varfin(w;)]}, or by =1 + Cov[ln(w;), In(1/a;)]/Var[ln (w;)], since b* = ¢* = 1. The ratio of the covariance to the variance is
the bias in the estimation of the identity, and it is given by the parameter u, in the auxiliary regression.
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Table 1. ACMS regression: Equation 5
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_ Implied .
ISIC No. . Industry ‘ : & by a . R X2 X
202 Dairy products - 290 0.72 0.05 0.92 25.94 12356
e o -(7.59) (13.02) '(2.62) ‘ L
203 Fruit and vegetable canning = 1.86 0.85 0:15 0.91 3.88 143
o | @75 (A1) @0 o S
205 Grain and mill products 1.61 0.91 0.20 0.85 0.88 14.49
- 2.47) (9.40) (1.53) ‘ o
206 ¢ - Bakery products ‘ 1.30 0.91 0.27 094 218 24.25 -
C 3.26) . (15.49) (2.51) C
207 . Sugar ‘ 2.50 0.78 0.08 0.79 3.64 461
| '_ | @16 6719 (126 , |
220 Tobacco 2.99 0.75 0.05 0.63 2.65 786
‘ S (2.89) 4.97) . (0.96)
231 Textile-spinning and weaving 2.02 0.80 0.13 0.89 8.44 L T2
, , ‘ (4.55) (12.01) (2.25) L
232 ° Kaitting mills © - 2.10 0.78 0.12 0.91 11.29 2224
"(4.84) (12.24) (2.29) o :
250 ‘Lumber and wood 1.61 0.86 0.20 091 . 4.60 <133
v e (3.72) (13.11) (2.30) L
260 ~Furniture 123 0.89 0.29 - 095 3.89 .19
’ o S (344 - (17.04) @7y Co Lo '
271 Pulp and paper 1.34 0.96 0.26 0.85 0.12 1.31
L _ ; (1.89) (9.58) (1.41) , o ‘
280 . Printing and publishing ‘ 1.56 0.86 021 . 0.94 5.36 252
' (3.89) (15.32) (2.49) ‘ ‘
291 Leather finishing : 1.66 0.85 0.19 0.92 - 536 - 192
. (3.92) (13.81) (2.35) .
311 Basic chemicals 2.23 0.83 0.11 0.89 555 - 406
o (4.37) (11.47) (1.96)
312 Fats and oils 2.30 0.83 0.10 0.87 321 151
/ ‘ ; 3.71).: (9.31) (1.61) ‘ ‘ o
319 Miscellaneous chemicals - 1.84 0.89 0.16 0.94 3.14 60
o ‘ (4.43) (15.08) (2.41) -
331 Clay products 1.18 0.92 0.30 0.88 0.67 7.92
' (1.76) (9.36) (1.48)
332 Glass ‘ 0.66 0.99 0.51 0.92 0.00017 0.08
o o (1.12) (11.87) (1.69) , :
333 Ceramics 1.16 0.90 0.31 0.93 1.93 35.36
: (2.40) (12.59) (2.05) :
334 Cement 1.84 0.92 0.16 0.77 0.28 8.44.
_ ‘ (1.69) 6.15) 0.92) : :
341 Iron and steel 2.14 0.81 0.12 0.93 9.70 960
' (4.96) (13.36) (2.32)
342 Non-ferrous metals 0.78 1.01 0.46 0.88 0.006 0.10 -
(0.89) (8.38) (1.14)
350 Metal products 1.36 0.90 0.25 0.89 1.23 25
o (2.20) (10.26) (1.61) o ‘
370 Electric machirery 1.69 0.87 018 0.80 1.22 67
- 4 ‘ (2.02) (7.35) (1.19)

sztes: t-values in parentﬁeses. Implied a=1 / exp (é,). Critical values: x%(0.0S) = 3.84; x3(0.01) = 6.63; x3(0.05) = 5.99;
x2(0.01) = 9.21.

hypothesis and warrants further investigation, but
the important point to note is that it does not
require the existence of a well-behaved aggregate
production function, even though the production
function may exist at firm level (as in Fisher’s 1971
simulation), and. that it explains the finding of
b < L

IV. ACMS’S TIME SERIES REGRESSIONS

The analysis in the above section has been confined to
production functions estimated using cross-sectional data.
However, the argument follows through when time-series
data are used and an allowance has to be made for techni-
cal progress. This case may also be illustrated with refer-
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Table 2. Summary statistics
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ISIC No. Industry Aave  Omax Country aq,, Ainin Country ag;, s §/Gaye
202 Dairy products 0.39  0.51 Canada 0.24 Ceylon 0.09 0.23
203 Fruit and vegetable canning 042 0.59 Norway 0.26 Mezxico 0.10 0.24
205 Grain and mill products 039 0.74 Norway 0.13 Colombia 0.13 0.35
206 Bakery products 049 0.62 Argentina 0.29 El Salvador 0.08 0.17
207 Sugar 0.39 057 Colombia 0.15 Japan 0.13 0.33
220 Tobacco 0.29 0.49 Denmark 0.08 Mexico 0.10 0.37
231 Textile-spinning and weaving 0.49 0.70 India 0.27 Ceylon 0.12 0.26
232 Knitting mills 0.53 0.75 Puerto Rico 0.33 Brazil 0.10 0.20
250 Lumber and wood 0.51  0.70 Ireland 0.30 Brazil 0.12 0.24
260 Furniture 0.59 0.70 Norway 0.42 Brazil 0.09 0.15
271 Pulp and paper 035 054 Colombia 0.16 Puerto Rico 0.10 0.28
280 Printing and publishing 0.53  0.78 Norway 0.39 Brazil 0.10 0.17
291 Leather finishing 0.51 0.66 Australia 0.29 Brazil 0.11 0.22
311 Basic chemicals 036 0.58 Ireland 0.20 Brazil 0.10 0.26
312 Fats and oils 032 044 United Kingdom 0.14 Ceylon 0.10 0.30
319 Miscellaneous chemicals 033 045 Ireland 0.24 Ceylon 0.06 0.19
331 Clay products 0.55 0.69 Japan 0.22 Puerto Rico 0.14 0.26
332 Glass 0.53 079 India 0.32 Colombia 0.10 0.23
333 Ceramics 0.62 0.86 Puerto Rico 0.40 Mexico 0.12 0.19
334 Cement 0.30 0.53 Australia 0.17 Mezxico 0.11 0.37
341 Iron and steel 046 0.55 United States 0.27 Iraq 0.10 0.21
342 Non-ferrous metals 0.44  0.69 Colombia 0.30 Argentina 0.13 0.30
350 Metal products 0.52  0.66 El Salvador 0.25 Argentina 0.11 0.22
370 Electric machinery 048 0.65 Australia 0.21 Puerto Rico 0.13 0.27

ence to first the Cobb—Douglas and then the CES produc-
tion function.

Differentiating the identity, Q,=w,L,+r.K,, with
respect to time and expressing the result in proportionate
growth rates gives:

g =aw,+ (1 —a)f;+ad,+(1- at)kz (10)

where g, 7, k, w, and 7 denote the growth rates of the
respective variables. If a,w; + (1 — a,)?, can be approxi-
mated by a constant trend rate of growth, A, and if factor
shares are constant, Equation 10 may be integrated to give
the Cobb-Douglas relation:

0, = Ay LK (11)

Alternatively, as already seen, the CES production func-
tion was developed in order to accommodate, among other
things, the possibility of nonconstant factor shares. If these
show some pronounced trend over the period being con-
sidered, a more flexible functional form may prove a better
approximation. One such function is the CES. This pro-
duction function, with the assumption of constant returns
to scale) is given by:

Q, =neM6L;" + (1 - 6K 771/ (12)

where, it will be recalled, é is a distribution parameter
and p is a parameter where the elasticity of substitution
o=1/(1 + p). A is the rate of technical change. The CES
function may be written using a Taylor series expansion as:

InQ, =Invg+\t+byInL, + by In K, + by(InK,/L,)* (13)

where b, = 6, by = (1 — §); and b, = —(1/2)6(1 — 6)p.
From Equation 13 it can be seen that if p =0, 54 will
equal zero and the equation will reduce to the Cobb—
Douglas production function. It is one of the stylized
facts of economic growth that over time there is a steady
growth in the capital-labour ratio. Consequently, if the
factor shares also exhibit a trend over the sample period,
then the CES may prove to give a better fit, because its
more flexible functional form allows this trend to be cap-
tured by the last two terms in Equation 13."® This fact,
however, may have nothing to do with the value of an
‘aggregate elasticity of substitution’, which may not in
fact exist. Fisher et al. (1977) used simulation analysis to
answer the question of why and when aggregate CES pro-
duction functions work well. The methodology followed
that of Fisher (1971) for the Cobb-Douglas, in that they
created individual firms which had well-defined CES micro
production functions, but, because of aggregation prob-
lems, there was no aggregate CES production function.

13 Estimates of the elasticity of substitution would be expected to be highly unstable with respect to the sample period chosen and this
indeed proves to be the case. See Nerlove (1967) for an early summary.
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Table 3. Auxiliary regression Ina; = py + po Inw;
ISIC No. Industry I 2 R?
202 Dairy products -2.90 0.28 0.62
(—17.59) (5.09)
203 Fruit and vegetable carining -~ —1.86 0.14 0.18
. (=3.75) (1.97) :
205 Grain and mill products —1.61 0.09 —0.007
: ' (=2.47) 0:94)
206 Bakery products ~1.30 0.08 0.07
' S (-3.26) (1.47)
207 Sugar =2.50 0.22 0.18
Eo (—3.16) (1.90)
220 Tobacco —2.99 0.24 0.10
: (—2.89) (1.62)
231 Textile-spinning and weaving -2.02 0.19 . 0.30
ST (=4.55) (2.90)
232 - Knitting mills -2.10 0.21 0.42
C (+4.84) (3.36) .
250 ‘Lumber and wood =1.61 0.14 0.17
. (=3.72) (2.14)
260 Furniture +1.23 0.10 0.16
. (+3.49) 197 .
271 Pulp and paper +1.34 0.035: . —0.062
(-1.89) (0.35)
280 - Printing and publishing +1.56 0.13 0.22
. ! (+=3.89) (2:31) ‘
291- Leather finishing —1.66 0.14 0.21
(—3.92) (2.31)
311 Basic chemicals —2.23 0.17 0.23
| | | (—437)  (239)
312 - 'Pats and oils —2.30 0.16 0.14
' (=3.71) (1.79)
319 .. .  Miscellaneous chemicals —~1.84: 0.10 0:12
(—4.43) 177
331 Clay products —1.18 0.08 —-0.02
(—1.76) (0.82)
332 Glass —0.66 0.01 —0.09
: (-1.12) 0.01)
333 Ceramics —1.16 0.10 0.08
(—2.40) (1.39)
334 Cement —1.84 0.08 —0.07
) (—1.69) (0.53)
341 Iron and steel —2.14 0.19 0.42
' (—4.96) (3.11)
342 Non-ferrous metals —0.78 —=0.01 —0.12
: (—0.89) (—0.08)
350 Metal products —1.36 0.09 0.019
(—2.20) (1.11)
370 Electric machinery —1.69 0.13 0.016
o ' (=2.02) (1.10)

Notwithstanding this, the data gave a good fit in terms
‘of the conventional diagnostics when the aggregate pro-
duction function was fitted. The authors concluded, how-
ever, that they could not determine what they termed the
‘organizing principle’ which would make the CES aggre-
gate production function give good predictive power when
the underlying microproduction functions were CES but
aggregation was not theoretically possible. It can be seen,
first, why the aggregate relationship had to produce good
results by reconsidering Fisher’s (1971) simulation experi-

ments, as he provided some interesting insights as to why
these paradoxical results appear (the arguments with the
Cobb-Douglas are more intuitive). Next, the organizing
principle behind the CES will be demonstrated.

Fisher assumed a small number of firms whose individ-
ual production functions were Cobb-Douglas, but with
different output elasticities. The conditions for successful
aggregation were explicitly violated. The simulation was

~ run over 20 time periods during which the aggregate labour

force, the level of technology, and the firms’ capital stocks
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were assumed to grow at a constant rate, subject to small
random fluctuations. Labour was allocated between firms
to optimize output. Thus, labour was paid its marginal
product and the wage rate was determined by the supply
and demand schedules for labour. Fisher then ran regres-
sions on the resulting aggregate data, estimating the Cobb~-
Douglas production function and seeing how well such a
function predicted wages. He generally found very high R%s
and a high degree of accuracy in the predictive ability of
the Cobb-Douglas, to his evident surprise. Why does the
aggregate Cobb-Douglas production function ‘work’ in
giving such good statistical fits?

Consider the simplest case of an economy of two firms,
where the underlying production function of each is a
Cobb—Douglas, markets are competitive, and factors are
paid their marginal products. The production functions
have different values for the output elasticities, and
these are equal to their respective factor shares. It is
known that the production functions cannot be summed
to give an aggregate Cobb—Douglas production function.
Nevertheless, because of the underlying identity, it can be
shown that, in certain circumstances, the aggregate Cobb—
Douglas will, in fact, give a good fit to the data, as Fisher
(1971) discovered. The output, measured in terms of value
added, of the two firms may be written in terms of the
identity as:

O = wi Ly, + 1.k, (14a)

Qo = wo Ly, + 15, K>, (14b)

Sum Equations 14a and 145 arithmetically. If the aggregate
shares are constant, then, as seen from the discussion
concerning Equations 5 and 6, the data will give an exact
fit to the aggregate Cobb-Douglas production function.
Aggregate labour’s share is given by Xg;0;/0(i=1,2)
where Q is the combined value added of the two firms. If
the output shares do not change greatly over time,'* or, for
a large number of firms, any changes are not correlated
with the labour share, so that there is no systematic rela-
tionship between the growth rate of the firms and the size
of their corresponding labour shares, then the aggregate
labour share will be approximately constant. If this is the
case, the Cobb—-Douglas relationship will give a good fit to
the aggregate data. In other words, if the Cobb-Douglas
relationship ‘works’, it must be because factor shares are
constant. But as Fisher (1971, p. 306) concluded: ‘the view
that the constancy of the labour share is due to the pres-
ence of an aggregate Cobb—Douglas production function is
mistaken. Causation runs the other way around and the

1 This was true in Fisher’s simulations.
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apparent success of aggregate Cobb—Douglas production
functions is due to the relative constancy of labour’s share.’
The reason why this is the case is simply the workings of
the underlying accounting identity (for a more detailed
discussion of Fisher, 1971, see Shaikh, 1980).!% 16

The same general arguments apply to the CES. If the
data are summed, the high degree of correspondence
between Q, L, and K from the identity will inevitably
give a high R?, when aggregate data are used in the regres-
sion analysis. If the individual shares are trended, then the
aggregate share is also likely to be a function of time. If this
is the case then one should expect a more flexible form such
as Equation 12 to give a better statistical fit to the aggre-
gate data.

This point may be made in a slightly different way. To
this purpose, return to the CES Equation 12 and express it
in growth rates:

8L, 7 1-8)K;”
Qt=>\t+[ Vtz }/t_!_[( Vz) : :lkt (15)
where:
V,=[6L7" + (1 - 8)K;’] (16)

Now consider again the accounting identity in time series
form given by Equation 10, namely:

g = aw,+ (1 = a)f, +a, + (1 — a,)k, (17)

Assuming a,W, + (1 — a,)f;, = ¢ (which is a constant),
Equation 17 becomes:

g =p+at,+(1-a)k (18)

Since the identity holds by definition, comparing Equation
15 with Equation 18 it is concluded that the following
relations must hold:

A =  (a constant) (19)
a, =8L;’[V, (20)
(1-a)=(1-0)K"/V, (21)

Equations 20 and 21 can also be derived from the CES
production function and the marginal productivity theory
of factor pricing. But the fact that these relationships are
found to hold empirically cannot be used as confirmation
of the marginal productivity conditions, because the argu-
ment shows that a CES aggregate production function may
not exist, and yet if the data happen to follow the paths
given by Equations 19-21, the CES will give a good statis-

' The simulation analysis of Felipe and Holz (2000) has shown that the Cobb—Douglas production function will still perform well in

spite of quite large random fluctuations in the factor shares.

1t is important to note that it is not necessary for each firm to have a well-defined Cobb-Douglas production function. All that is for
the firms’ factor shares to be constant, because of, say, a constant markup pricing policy.
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tical fit. To see this; substitute: Equations 19<21 into 18 and
integrate. This will yield Equation 12. :

From this analysis it can be inferred that the ‘organizing
principle’, in terms of the behaviour of the factor share;
that explains why and when the CES production function:
Equation 12 will produce good results is given by the paths
in Equations 20 and 21 (together with Equation 19). It
must be stressed that the réeason for following such paths
need not necessarily be the neoclassical theory of factor
pricing and the ‘assumptions of profit maximization and
competltlve markets. If the labour share is changing over
time, 4 more flexible form such as Equation 12 should
provide a good approximation to the data. Furthermore,
if the shares and ¢ follow exactly the paths given by
Equations 19, 20, and 21, then expression 12 will be exactly
the ' accounting identity. Nevertheless, one could ask
whether there is any other theoretical justification for the
factor share paths Equations 20- and 21. Assume, for
example, that both- capital and labour grow at constant
rates, with the former growing fastér than the latter. In
this economy also assume that the technology cannot be
represented by a CES production function. Also assume
that due to sociopolitical factors, e.g., trade union mili-
taficy, laboui’s relative share (ie., a,/(1 —a;)) is also
increasing at a constant rate over time. As both labour’s
relative share and the capital-labour ratio are increasing
over time, they may well be related to each other by:

(da/dr> - (d(zl—_ag d’) t‘=‘b(k", —¢) @)

a

where b is a ‘constant. '
‘However; ‘this expression is identical to the one obtained
by subtracting the growth rates of the factor shares pro-
vided by the CES production function together with the
marginal productivity theory of factor pricing (Equation
20, expressed in growth rates, minus Equation 21, also in
growth rates). But the example provided above has nothing
to do with the CES production function. The rate of
change of labour’s relative share is not caused by the
growth. of the capital-labour ratio and the CES does not
describe the underlying technology of the economy.!’

. ACMS. also estimated the CES production function
using the time series data from Solow’s (1957). classic
study. This was for private non-farm GDP for the US
over the period 1909-49. Clearly, technology changed
over this period, and ACMS assumed it was at a constant
rate and proxied it by a time trend (Equation 34 in ACMS).
Under these circumstances, with a little manipulation,
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Equation 8 may be written as (substltutmg the subscnpt i
for ) TR
Ina, :rln(tht/Qt) o

= [oIn(6) + - X1-0)t
” (23)

(c—1Dnyl+ (1 —0)lnw,

where it is assumed that technical change grows at a con-
stant exponential rate so Ve = ryOe . The term in square
brackets is a constant and, urdeér neoclassmal assumptions,
X measures the rate of growth of total factor product1v1ty
Equation 23 is estimated as:

Ina, = c3 + bglnw, + byt : (24)‘

Usmg Solow’s corrected data (Hogan, 1958), a rerun of
ACMS’S regression gives the followmg result

Ina, = —0.062 +0.387In w, — 0.0069¢
(=1.29) (748) - (-722) .
R*=0574, DW=1802, SEE=0018

Since this is merely estimating an identity the usual tests
for the orders of integration, etc. were not undertaken, but
the Durbin-Watson suggests that the variables ate cointe-
grated. Lags or specifying an error correction model were
also not considered. While ACMS’s results were not pre-
cisely replicated, the estimate of the ‘aggregate elasticity
of substitution’ of 0.387 is sufficiently close to their esti-
mate of 0.431. However, these results do not suggest that if’
there is an underlying aggregate production fimction; it
cannot be a Cobb—Douglas, pace ACMS. (ACMS rejected
the hypothesis of a Cobb-Douglas production function
because the coefficients of Inw and ¢ are significantly differ-
ent from zero). To see why this is the case, first con31der the
1dent1ty given by the labour share:

Ing, =10lnw,— 1.0n(Q,/L).  (25)
One way of interpreting Equation 24 is that it is merely
Equation 25 with In(Q,/L,) proxied by the time trend, .

In(Q,/L), is strongly trended, as may be seen’ from the
followmg regression:

ln(Qt/L,) — —0.504 + 0.018¢
" (—41.73) (36.17)
R?=0970, DW =0.752, SEE =0.0379

However, w, grows at a trend rate almost identical to that
of 0,/L;:

17 An additional argument is that the CES can derived from a Box—Cox transformation, as Zarembka (1974) showed. (See also Bairam,
1997.) This is simply a mathematical transformation of the data with a view to improving the statistical goodness of fit by letting the data
select the functional form, but which does not necessarily reflect any technological relationships. . -
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Inw, = —0.922 + 0.0183¢
(—52.81) (25.05)

R*=0.686, DW =0.686,

Thus, there is strong multicollinearity between Inw,,
In(Q,/L,), and ¢, which is sufficient to bias the coefficient
of Inw below unity and inflate the standard errors of the
estimated coefficients. If one was in fact merely estimating
the identity given by Equation 25, as the sum of its coeffi-
cients are equal to zero, it would be expected that if we
were to proxy Inw, by its trend rate of growth of 0.0183¢ in
the equation Ina, = —0.062 + 0.387 Inw, — 0.0069¢, then
the sum of the coefficients of ¢ should also equal zero. As
0.0183 x 0.387 = 0.0071 =~ 0.0069, this indeed proves to be
the case. In other words, In a, does not show any significant
change over time. If we were to interpret these results as
reflecting a production function, we would have to con-
clude it was a Cobb—Douglas and not a CES.

Alternatively, this may be confirmed by regressing Ina,
directly on a time trend, where the slope coefficient should
not be significantly different from zero. This, not surpris-
ingly in view of the above results, proves to be true:

SEE = 0.0548

Inag, = —0.419 + 0.309 x 107*¢
(—47.84) (0.09)

R*=-0.025, DW =1.342, SEE=0.0275

Consequently, under the neoclassical assumptions, the
Cobb-Douglas production function cannot be ruled out.
However, it is worth re-emphasizing that all we are doing is
confirming an identity.

ACMS proceeded to estimate another side relation
which does not suffer from the problem of multicollinear-
ity, and somewhat ironically found that the results did not
refute the hypothesis of a unity ‘elasticity of substitution’.
The equation was (Equation 38 in ACMS):

In(a,/(1 — a)) =Wn[6/(1 — 6)] + pIn(K/L), (26)
Re-estimating the equation with Solow’s data gives:
In(a,/(1 — a,)) = 0.750 — 0.096 In(K /L),

(7.88) (—0.97)

R*=-0.001, DW =1.356, SEE =0.0778

which is close to the value of the slope coefficient found by
ACMS (which was —0.095). The estimate of ¢ is given by
1/(1+ p) takes a value of 1.106, which is not significantly
different from unity at the 5% confidence level (the z-value
for this null hypothesis is 0.88). As ACMS point out, if the
relationships were exact including that of the ACMS ‘pro-
duction function’, the estimated values of § and p from
Equation 26 should be exactly the same as those obtained
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from estimating Equation 23. ‘Hence the discrepancy must
be due to the different assumptions about the errors impli-
cit in the statistical estimation methods. This problem
remains an open one at the moment’ (ACMS, p. 246).
The resolution of this problem is, as shown here, the fact
that there is significant multicollinearity in the estimation
of Equation 24.

The parsimonious explanation of these regressions is
that, because of the accounting identity, all they show is
that factor shares vary little over time, due for example, to
a constant aggregate mark-up. The data are compatible
with a Cobb-Douglas production function, with all the
usual neoclassical assumptions, but the data provide no
independent evidence that such a production function actu-
ally exists. The data cannot be used to test these assump-
tions or whether or not there is a well-behaved aggregate
production function.

V. CONCLUSIONS

This paper has shown that the empirical evidence pro-
vided by Arrow et al. (1961) in their seminal work on the
CES production function, may be interpreted merely as, in
Simon’s words, a statistical artefact. The reason is that
Occam’s razor suggests that the CES production function,
as well as the side equations ACMS derived, merely reflect
the underlying accounting identity that value added equals
the wage bill plus profits. All their empirical results and
arguments are more parsimoniously explained with refer-
ence to this identity than with reference to an underlying
aggregate technology. Since the explanation provided in
terms of the accounting identity encompasses that in
terms of an aggregate production function, this poses ser-
ious problems for the legitimacy and conclusions of
ACMS’s work, as well as for the subsequent work during
the last 40 years using this aggregate form.
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